Tao, X. Study of fiber-based wearable energy systems. Acc. Chem. Res. 52, 307–315 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Nuthalapati, S. et al. Wearable high-performance MWCNTs/PDMS nanocomposite based triboelectric nanogenerators for haptic applications. IEEE J. Flex. Electron. (2024).

Bochu, L. et al. Enhancing triboelectric nanogenerator performance with Metal–Organic framework composite nanofibers: applications in public transit Monitoring, staircase Alerts, and security. ACS Appl. Polym. Mater. 7, 4132–4141 (2025).

Article 
CAS 

Google Scholar
 

Behera, S. A. et al. Current trends on advancement in smart textile device engineering. Adv. Sustain. Syst. 8, 2400344 (2024).

Article 

Google Scholar
 

Hajra, S. et al. Self-Powered fire safety indicator based on Fabric‐Based triboelectric nanogenerator. Energy Technol. 2402488 (2025).

Arkan, M. Z. et al. One material-opposite triboelectrification: molecular engineering regulated triboelectrification on silica surface to enhance TENG efficiency. Molecules 28, 5662 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yiğit Arkan, M. Z. et al. Molecular engineering-device efficiency relation: performance boosting of triboelectric nanogenerator through doping of small molecules. Int. J. Energy Res. 46, 23517–23529 (2022).

Article 

Google Scholar
 

Kaja, K. R. et al. Calcium copper titanate particles based energy harvesting and removal of pharmaceutical pollutants. ACS Appl. Electron. Mater. 7, 4327–4338 (2025).

Article 
CAS 

Google Scholar
 

Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015).

Article 
CAS 

Google Scholar
 

Wu, C., Wang, A. C., Ding, W., Guo, H. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).

Article 

Google Scholar
 

Zhao, X. et al. Studying of contact electrification and electron transfer at liquid-liquid interface. Nano Energy. 87, 106191 (2021).

Article 
CAS 

Google Scholar
 

You, J. et al. Simulation model of a non-contact triboelectric nanogenerator based on electrostatic induction. EcoMat 5, e12392 (2023).

Article 

Google Scholar
 

Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today. 30, 34–51 (2019).

Article 

Google Scholar
 

Panda, S. et al. An overview of Flame-Retardant materials for triboelectric nanogenerators and future applications. Adv. Mater. 37, 2415099 (2025).

Article 
CAS 

Google Scholar
 

Sankar, P. R. et al. In 2023 IEEE 20th India Council International Conference (INDICON) 1452–1457 (IEEE).

Babu, A. et al. Functionalized MIL-125 (Ti)-based high-performance triboelectric nanogenerators for hygiene monitoring. Mater. Adv. (2025).

Potu, S., Kulandaivel, A., Gollapelli, B., Khanapuram, U. K. & Rajaboina, R. K. Oxide based triboelectric nanogenerators: recent advances and future prospects in energy harvesting. Mater. Sci. Engineering: R: Rep. 161, 100866 (2024).

Article 

Google Scholar
 

Zhou, T. et al. Multilayered electret films based triboelectric nanogenerator. Nano Res. 9, 1442–1451 (2016).

Article 
CAS 

Google Scholar
 

Haider, Z. et al. Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy. 68, 104294 (2020).

Article 
CAS 

Google Scholar
 

Firdous, I. et al. Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. Nano Energy. 89, 106315 (2021).

Article 
CAS 

Google Scholar
 

Alam, S. N. et al. An introduction to triboelectric nanogenerators. Nano-Structures Nano-Objects. 34, 100980 (2023).

Article 
CAS 

Google Scholar
 

Kim, W. G. et al. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano. 15, 258–287 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Choi, D. et al. Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano. 17, 11087–11219 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Y. et al. Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30, 2004714 (2020).

Article 
CAS 

Google Scholar
 

Zi, Y. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kang, B. C., Choi, H. J., Park, S. J. & Ha, T. J. Wearable triboelectric nanogenerators with the reduced loss of triboelectric charges by using a hole transport layer of bar-printed single-wall carbon nanotube random networks. Energy 233, 121196 (2021).

Article 

Google Scholar
 

Liu, L. et al. Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator. Nano Today. 57, 102319 (2024).

Article 
CAS 

Google Scholar
 

Lowell, J. & Rose-Innes, A. Contact electrification. Adv. Phys. 29, 947–1023 (1980).

Article 
ADS 
CAS 

Google Scholar
 

Kwetkus, B. Particle triboelectrification and its use in the electrostatic separation process. Part. Sci. Technol. 16, 55–68 (1998).

Article 
CAS 

Google Scholar
 

McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

Article 
CAS 

Google Scholar
 

Elsdon, R. & Mitchell, F. Contact electrification of polymers. J. Phys. D. 9, 1445 (1976).

Article 
ADS 
CAS 

Google Scholar
 

Grzybowski, B. A., Fialkowski, M. & Wiles, J. A. Kinetics of contact electrification between metals and polymers. J. Phys. Chem. B. 109, 20511–20515 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Grzybowski, B. A., Winkleman, A., Wiles, J. A., Brumer, Y. & Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2, 241–245 (2003).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Baytekin, H. et al. The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wiles, J. A., Grzybowski, B. A., Winkleman, A. & Whitesides, G. M. A tool for studying contact electrification in systems comprising metals and insulating polymers. Anal. Chem. 75, 4859–4867 (2003).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Diaz, A. & Felix-Navarro, R. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004).

Article 
CAS 

Google Scholar
 

Iuga, A., Calin, L., Neamtu, V., Mihalcioiu, A. & Dascalescu, L. Tribocharging of plastics granulates in a fluidized bed device. J. Electrostat. 63, 937–942 (2005).

Article 
CAS 

Google Scholar
 

Sun, Y. et al. Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy. Nano Energy. 121, 109194 (2024).

Article 
CAS 

Google Scholar
 

He, W. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research (2022).

Kim, D. W., Lee, J. H., Kim, J. K. & Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12, 6 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Lai, M. et al. Enhancing the output charge density of TENG via Building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl. Mater. Interfaces. 10, 2158–2165 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, Y. J. & Yang, C. H. Electret formation in transition metal oxides by electrochemical amorphization. NPG Asia Mater. 12, 1 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Wang, S., Lin, L. & Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy. 11, 436–462 (2015).

Article 
CAS 

Google Scholar
 

Zhu, G. et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jiang, T. et al. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano. 9, 12562–12572 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Calió, L., Kazim, S., Grätzel, M. & Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522–14545 (2016).

Article 

Google Scholar
 

Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A. 5, 1348–1373 (2017).

Article 
CAS 

Google Scholar
 

Steuber, F. et al. White light emission from organic leds utilizing Spiro compounds with high-temperature stability. Adv. Mater. 12, 130–133 (2000).

Article 
ADS 
CAS 

Google Scholar
 

Qiu, Y. & Qiao, J. Photostability and morphological stability of hole transporting materials used in organic electroluminescence. Thin Solid Films. 372, 265–270 (2000).

Article 
ADS 
CAS 

Google Scholar
 

Li, Y. et al. High-performance perovskite solar cells with a non-doped small molecule hole transporting layer. ACS Appl. Energy Mater. 2, 1634–1641 (2019).

Article 
CAS 

Google Scholar
 

Tse, S., Kwok, K. & So, S. Electron transport in naphthylamine-based organic compounds. Appl. Phys. Lett. 89 (2006).

Ayub, A. R. et al. Advancement in the properties of novel NPB derivatives for highly efficient organic solar cell of PCE-19.53%. Mater. Sci. Engineering: B. 306, 117482 (2024).

Article 
CAS 

Google Scholar
 

Ma, S. et al. Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT: PSS/perovskite interface. Sol. Energy Mater. Sol. Cells. 208, 110379 (2020).

Article 
CAS 

Google Scholar
 

Bag, S., Friederich, P., Kondov, I. & Wenzel, W. Concentration dependent energy levels shifts in donor-acceptor mixtures due to intermolecular electrostatic interaction. Sci. Rep. 9, 12424 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Tseng, Z. L., Huang, W. L., Yeh, T. H., Xu, Y. X. & Chiang, C. H. Thermally activated delayed fluorescence in commercially available materials for solution-process exciplex OLEDs. Polymers 13, 1668 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yigit, M. Z. et al. Effect of a pi-bridging unit in triphenylamine-benzothiadiazole based donor acceptor chromophores for dye-sensitized solar cells. Electrochim. Acta. 147, 617–625 (2014).

Article 
CAS 

Google Scholar
 

Sastri, V. Engineering thermoplastics: acrylics. Polycarbonates, Polyurethanes, Polyacetals, Polyesters, and Polyamides, Plastics in Medical Devices 121–172 (2022).

Kumar, R. et al. Study of thermal and mechanical behavior by analyzing reinforcement effect of graphene nanoplatelets on polyamide-66 composite system developed via melt-mixing technique. Mater. Res. Express. 10, 105306 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Kim, Y. J. et al. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 7, 49368–49373 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Yar, A. et al. Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renew. Energy 179, 1781–1792 (2021).

Article 
CAS 

Google Scholar
 

Treasa Mathew, D. et al. Surface area enhanced nylon-6, 6 nanofiber engineered triboelectric nanogenerator for self-powered seat monitoring applications. ACS Sustain. Chem. Eng. 10, 14126–14135 (2022).

Article 
CAS 

Google Scholar
 

Mizzi, C. A., Lin, A. Y. & Marks, L. D. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xia, Y., Qian, W. & Yang, Y. Advancements and prospects of flexoelectricity. ACS Appl. Mater. Interfaces (2024).

Lin, T., Wang, H., Wang, H. & Wang, X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15, 1375 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Lin, K., Chua, K. N., Christopherson, G. T., Lim, S. & Mao, H. Q. Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer 48, 6384–6394 (2007).

Article 
CAS 

Google Scholar
 

Semnani, D. Electrospun Nanofibers 151–180 (Elsevier, 2017).

Arkan, E. et al. Nano-ceria based tengs: effect of Dopant structure on energy harvesting performance. Surf. Interfaces. 37, 102683 (2023).

Article 
CAS 

Google Scholar
 

Bakhtiyari, S. et al. Yarn-to‐Yarn surface area and roughness as structural engineering tools for optimizing the electrical output of triboelectric nanogenerators: geometrical and experimental verification. Adv. Mater. Technol. 2401346 (2025).

Shi, K. et al. Dielectric manipulated charge dynamics in contact electrification. Research (2022).

Karner, S., Maier, M., Littringer, E. & Urbanetz, N. A. Surface roughness effects on the tribo-charging and mixing homogeneity of adhesive mixtures used in dry powder inhalers. Powder Technol. 264, 544–549 (2014).

Article 
CAS 

Google Scholar
 

Sardana, S. & Mahajan, A. Controlling electrospun nanofibers surface morphology using relative humidity for enhancing triboelectric nanogenerator performance. Chem. Phys. Lett. 844, 141289 (2024).

Article 

Google Scholar
 

Thai, T. Q., Zhuang, X. & Rabczuk, T. An electro-mechanical dynamic model for flexoelectric energy harvesters. Nonlinear Dyn. 111, 2183–2202 (2023).

Article 

Google Scholar
 

Xu, Y., Min, G., Gadegaard, N., Dahiya, R. & Mulvihill, D. M. A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy. 76, 105067 (2020).

Article 
CAS 

Google Scholar
 

Stengel, M. Surface control of flexoelectricity. Phys. Rev. B. 90, 201112 (2014).

Article 
ADS 

Google Scholar
 

Persson, B. On the role of flexoelectricity in triboelectricity for randomly rough surfaces. Europhys. Lett. 129, 10006 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, H., Sundaresan, S. & Webb, M. A. Thermodynamic driving forces in contact electrification between polymeric materials. Nat. Commun. 15, 2616 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lowell, J. & Akande, A. Contact electrification-why is it variable? J. Phys. D. 21, 125 (1988).

Article 
ADS 
CAS 

Google Scholar
 

Deryagin, B. & Metsik, M. Role of electrical forces in the process of splitting mica along cleavage planes. Sov Phys. Solid State. 1, 1393–1399 (1960).


Google Scholar
 

Terris, B., Stern, J., Rugar, D. & Mamin, H. Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669 (1989).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Albrecht, V. et al. Some aspects of the polymers’ electrostatic charging effects. J. Electrostat. 67, 7–11 (2009).

Article 
CAS 

Google Scholar
 

Nawaz, S. M., Chatterjee, M., Chakrabarti, S., Sepay, N. & Mallik, A. Realization of a highly-performing triboelectric nanogenerator utilizing molecular self-assembly. Nano Energy. 117, 108924 (2023).

Article 
CAS 

Google Scholar
 

Nawaz, S. M., Saha, M., Sepay, N. & Mallik, A. Energy-from-waste: a triboelectric nanogenerator fabricated from waste polystyrene for energy harvesting and self-powered sensor. Nano Energy. 104, 107902 (2022).

Article 
CAS 

Google Scholar
 

Wu, J., Wang, X., Li, H., Wang, F. & Hu, Y. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano Energy. 63, 103864 (2019).

Article 
CAS 

Google Scholar
 

Yadav, R. A. K., Dubey, D. K., Chen, S. Z., Liang, T. W. & Jou, J. H. Role of molecular orbital energy levels in OLED performance. Sci. Rep. 10, 9915 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amthor, S., Noller, B. & Lambert, C. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chem. Phys. 316, 141–152 (2005).

Article 
CAS 

Google Scholar
 

Yu, Y. & Wang, X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9, 514–530 (2016).

Article 

Google Scholar
 

Lee, B. Y. et al. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20, 758–773 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arkan, E. et al. Influence of end groups variation of self assembled monolayers on performance of planar perovskite solar cells by interface regulation. Mater. Sci. Semiconduct. Process. 123, 105514 (2021).

Article 
CAS 

Google Scholar
 

Bélières, M. et al. Simple electron donor molecules based on triphenylamine and carbazole derivatives. Dyes Pigm. 153, 275–283 (2018).

Article 

Google Scholar
 

Karabiber, A., Dirik, Ö., Koc, F. & Ozel, F. Dielectric size optimization for high power density in large-scale triboelectric nanogenerators. Nano Res. 17, 8455–8464 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Wang, N., Liu, Y., Ye, E., Li, Z. & Wang, D. Control methods and applications of interface contact electrification of triboelectric nanogenerators: a review. Mater. Res. Lett. 10, 97–123 (2022).

Article 

Google Scholar
 

Bai, Y., Feng, H. & Li, Z. Theory and applications of high-voltage triboelectric nanogenerators. Cell Rep. Phys. Sci. 3 (2022).

Zhang, Z., Chen, Y., Debeli, D. K. & Guo, J. S. Facile method and novel dielectric material using a nanoparticle-doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces. 10, 13082–13091 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Sokolov, A., Novikov, V. & Ding, Y. Why many polymers are so fragile. J. Phys.: Condens. Matter. 19, 205116 (2007).

ADS 

Google Scholar
 

Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F. & Sokolov A. P. Role of chemical structure in fragility of polymers: a qualitative picture. Macromolecules 41, 7232–7238 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Nolte, A. J., Chung, J. Y., Davis, C. S. & Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter. 13, 7930–7937 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greenhalgh, E. S. Delamination-dominated failures in polymer composites. In Failure Analysis Fractography of Polymer Composites 164–237 (2009).

Seid, A. M. & Adimass, S. A. Review on the impact behavior of natural fiber epoxy based composites. Heliyon 10 (2024).

Kumar, K., Iqbal, M. & Gupta, P. Constitutive and dynamic behavior of nylon 66 polymer under quasi and high rate of loading. J. Vib. Eng. Technol. 12, 7563–7593 (2024).

Article 

Google Scholar
 

More, A. & Donald, A. The effect of metal halides on the deformation mechanism of thin films of nylon. Polymer 33, 4081–4086 (1992).

Article 
CAS 

Google Scholar