Tao, X. Study of fiber-based wearable energy systems. Acc. Chem. Res. 52, 307–315 (2019).
Nuthalapati, S. et al. Wearable high-performance MWCNTs/PDMS nanocomposite based triboelectric nanogenerators for haptic applications. IEEE J. Flex. Electron. (2024).
Bochu, L. et al. Enhancing triboelectric nanogenerator performance with Metal–Organic framework composite nanofibers: applications in public transit Monitoring, staircase Alerts, and security. ACS Appl. Polym. Mater. 7, 4132–4141 (2025).
Behera, S. A. et al. Current trends on advancement in smart textile device engineering. Adv. Sustain. Syst. 8, 2400344 (2024).
Hajra, S. et al. Self-Powered fire safety indicator based on Fabric‐Based triboelectric nanogenerator. Energy Technol. 2402488 (2025).
Arkan, M. Z. et al. One material-opposite triboelectrification: molecular engineering regulated triboelectrification on silica surface to enhance TENG efficiency. Molecules 28, 5662 (2023).
Yiğit Arkan, M. Z. et al. Molecular engineering-device efficiency relation: performance boosting of triboelectric nanogenerator through doping of small molecules. Int. J. Energy Res. 46, 23517–23529 (2022).
Kaja, K. R. et al. Calcium copper titanate particles based energy harvesting and removal of pharmaceutical pollutants. ACS Appl. Electron. Mater. 7, 4327–4338 (2025).
Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015).
Wu, C., Wang, A. C., Ding, W., Guo, H. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).
Zhao, X. et al. Studying of contact electrification and electron transfer at liquid-liquid interface. Nano Energy. 87, 106191 (2021).
You, J. et al. Simulation model of a non-contact triboelectric nanogenerator based on electrostatic induction. EcoMat 5, e12392 (2023).
Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today. 30, 34–51 (2019).
Panda, S. et al. An overview of Flame-Retardant materials for triboelectric nanogenerators and future applications. Adv. Mater. 37, 2415099 (2025).
Sankar, P. R. et al. In 2023 IEEE 20th India Council International Conference (INDICON) 1452–1457 (IEEE).
Babu, A. et al. Functionalized MIL-125 (Ti)-based high-performance triboelectric nanogenerators for hygiene monitoring. Mater. Adv. (2025).
Potu, S., Kulandaivel, A., Gollapelli, B., Khanapuram, U. K. & Rajaboina, R. K. Oxide based triboelectric nanogenerators: recent advances and future prospects in energy harvesting. Mater. Sci. Engineering: R: Rep. 161, 100866 (2024).
Zhou, T. et al. Multilayered electret films based triboelectric nanogenerator. Nano Res. 9, 1442–1451 (2016).
Haider, Z. et al. Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy. 68, 104294 (2020).
Firdous, I. et al. Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. Nano Energy. 89, 106315 (2021).
Alam, S. N. et al. An introduction to triboelectric nanogenerators. Nano-Structures Nano-Objects. 34, 100980 (2023).
Kim, W. G. et al. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano. 15, 258–287 (2021).
Choi, D. et al. Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano. 17, 11087–11219 (2023).
Liu, Y. et al. Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30, 2004714 (2020).
Zi, Y. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).
Kang, B. C., Choi, H. J., Park, S. J. & Ha, T. J. Wearable triboelectric nanogenerators with the reduced loss of triboelectric charges by using a hole transport layer of bar-printed single-wall carbon nanotube random networks. Energy 233, 121196 (2021).
Liu, L. et al. Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator. Nano Today. 57, 102319 (2024).
Lowell, J. & Rose-Innes, A. Contact electrification. Adv. Phys. 29, 947–1023 (1980).
Kwetkus, B. Particle triboelectrification and its use in the electrostatic separation process. Part. Sci. Technol. 16, 55–68 (1998).
McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).
Elsdon, R. & Mitchell, F. Contact electrification of polymers. J. Phys. D. 9, 1445 (1976).
Grzybowski, B. A., Fialkowski, M. & Wiles, J. A. Kinetics of contact electrification between metals and polymers. J. Phys. Chem. B. 109, 20511–20515 (2005).
Grzybowski, B. A., Winkleman, A., Wiles, J. A., Brumer, Y. & Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2, 241–245 (2003).
Baytekin, H. et al. The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011).
Wiles, J. A., Grzybowski, B. A., Winkleman, A. & Whitesides, G. M. A tool for studying contact electrification in systems comprising metals and insulating polymers. Anal. Chem. 75, 4859–4867 (2003).
Diaz, A. & Felix-Navarro, R. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004).
Iuga, A., Calin, L., Neamtu, V., Mihalcioiu, A. & Dascalescu, L. Tribocharging of plastics granulates in a fluidized bed device. J. Electrostat. 63, 937–942 (2005).
Sun, Y. et al. Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy. Nano Energy. 121, 109194 (2024).
He, W. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research (2022).
Kim, D. W., Lee, J. H., Kim, J. K. & Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12, 6 (2020).
Lai, M. et al. Enhancing the output charge density of TENG via Building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl. Mater. Interfaces. 10, 2158–2165 (2018).
Kim, Y. J. & Yang, C. H. Electret formation in transition metal oxides by electrochemical amorphization. NPG Asia Mater. 12, 1 (2020).
Wang, S., Lin, L. & Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy. 11, 436–462 (2015).
Zhu, G. et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013).
Jiang, T. et al. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano. 9, 12562–12572 (2015).
Calió, L., Kazim, S., Grätzel, M. & Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522–14545 (2016).
Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A. 5, 1348–1373 (2017).
Steuber, F. et al. White light emission from organic leds utilizing Spiro compounds with high-temperature stability. Adv. Mater. 12, 130–133 (2000).
Qiu, Y. & Qiao, J. Photostability and morphological stability of hole transporting materials used in organic electroluminescence. Thin Solid Films. 372, 265–270 (2000).
Li, Y. et al. High-performance perovskite solar cells with a non-doped small molecule hole transporting layer. ACS Appl. Energy Mater. 2, 1634–1641 (2019).
Tse, S., Kwok, K. & So, S. Electron transport in naphthylamine-based organic compounds. Appl. Phys. Lett. 89 (2006).
Ayub, A. R. et al. Advancement in the properties of novel NPB derivatives for highly efficient organic solar cell of PCE-19.53%. Mater. Sci. Engineering: B. 306, 117482 (2024).
Ma, S. et al. Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT: PSS/perovskite interface. Sol. Energy Mater. Sol. Cells. 208, 110379 (2020).
Bag, S., Friederich, P., Kondov, I. & Wenzel, W. Concentration dependent energy levels shifts in donor-acceptor mixtures due to intermolecular electrostatic interaction. Sci. Rep. 9, 12424 (2019).
Tseng, Z. L., Huang, W. L., Yeh, T. H., Xu, Y. X. & Chiang, C. H. Thermally activated delayed fluorescence in commercially available materials for solution-process exciplex OLEDs. Polymers 13, 1668 (2021).
Yigit, M. Z. et al. Effect of a pi-bridging unit in triphenylamine-benzothiadiazole based donor acceptor chromophores for dye-sensitized solar cells. Electrochim. Acta. 147, 617–625 (2014).
Sastri, V. Engineering thermoplastics: acrylics. Polycarbonates, Polyurethanes, Polyacetals, Polyesters, and Polyamides, Plastics in Medical Devices 121–172 (2022).
Kumar, R. et al. Study of thermal and mechanical behavior by analyzing reinforcement effect of graphene nanoplatelets on polyamide-66 composite system developed via melt-mixing technique. Mater. Res. Express. 10, 105306 (2023).
Kim, Y. J. et al. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 7, 49368–49373 (2017).
Yar, A. et al. Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renew. Energy 179, 1781–1792 (2021).
Treasa Mathew, D. et al. Surface area enhanced nylon-6, 6 nanofiber engineered triboelectric nanogenerator for self-powered seat monitoring applications. ACS Sustain. Chem. Eng. 10, 14126–14135 (2022).
Mizzi, C. A., Lin, A. Y. & Marks, L. D. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).
Xia, Y., Qian, W. & Yang, Y. Advancements and prospects of flexoelectricity. ACS Appl. Mater. Interfaces (2024).
Lin, T., Wang, H., Wang, H. & Wang, X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15, 1375 (2004).
Lin, K., Chua, K. N., Christopherson, G. T., Lim, S. & Mao, H. Q. Reducing electrospun nanofiber diameter and variability using cationic amphiphiles. Polymer 48, 6384–6394 (2007).
Semnani, D. Electrospun Nanofibers 151–180 (Elsevier, 2017).
Arkan, E. et al. Nano-ceria based tengs: effect of Dopant structure on energy harvesting performance. Surf. Interfaces. 37, 102683 (2023).
Bakhtiyari, S. et al. Yarn-to‐Yarn surface area and roughness as structural engineering tools for optimizing the electrical output of triboelectric nanogenerators: geometrical and experimental verification. Adv. Mater. Technol. 2401346 (2025).
Shi, K. et al. Dielectric manipulated charge dynamics in contact electrification. Research (2022).
Karner, S., Maier, M., Littringer, E. & Urbanetz, N. A. Surface roughness effects on the tribo-charging and mixing homogeneity of adhesive mixtures used in dry powder inhalers. Powder Technol. 264, 544–549 (2014).
Sardana, S. & Mahajan, A. Controlling electrospun nanofibers surface morphology using relative humidity for enhancing triboelectric nanogenerator performance. Chem. Phys. Lett. 844, 141289 (2024).
Thai, T. Q., Zhuang, X. & Rabczuk, T. An electro-mechanical dynamic model for flexoelectric energy harvesters. Nonlinear Dyn. 111, 2183–2202 (2023).
Xu, Y., Min, G., Gadegaard, N., Dahiya, R. & Mulvihill, D. M. A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy. 76, 105067 (2020).
Stengel, M. Surface control of flexoelectricity. Phys. Rev. B. 90, 201112 (2014).
Persson, B. On the role of flexoelectricity in triboelectricity for randomly rough surfaces. Europhys. Lett. 129, 10006 (2020).
Zhang, H., Sundaresan, S. & Webb, M. A. Thermodynamic driving forces in contact electrification between polymeric materials. Nat. Commun. 15, 2616 (2024).
Lowell, J. & Akande, A. Contact electrification-why is it variable? J. Phys. D. 21, 125 (1988).
Deryagin, B. & Metsik, M. Role of electrical forces in the process of splitting mica along cleavage planes. Sov Phys. Solid State. 1, 1393–1399 (1960).
Terris, B., Stern, J., Rugar, D. & Mamin, H. Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669 (1989).
Albrecht, V. et al. Some aspects of the polymers’ electrostatic charging effects. J. Electrostat. 67, 7–11 (2009).
Nawaz, S. M., Chatterjee, M., Chakrabarti, S., Sepay, N. & Mallik, A. Realization of a highly-performing triboelectric nanogenerator utilizing molecular self-assembly. Nano Energy. 117, 108924 (2023).
Nawaz, S. M., Saha, M., Sepay, N. & Mallik, A. Energy-from-waste: a triboelectric nanogenerator fabricated from waste polystyrene for energy harvesting and self-powered sensor. Nano Energy. 104, 107902 (2022).
Wu, J., Wang, X., Li, H., Wang, F. & Hu, Y. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano Energy. 63, 103864 (2019).
Yadav, R. A. K., Dubey, D. K., Chen, S. Z., Liang, T. W. & Jou, J. H. Role of molecular orbital energy levels in OLED performance. Sci. Rep. 10, 9915 (2020).
Amthor, S., Noller, B. & Lambert, C. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chem. Phys. 316, 141–152 (2005).
Yu, Y. & Wang, X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9, 514–530 (2016).
Lee, B. Y. et al. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20, 758–773 (2019).
Arkan, E. et al. Influence of end groups variation of self assembled monolayers on performance of planar perovskite solar cells by interface regulation. Mater. Sci. Semiconduct. Process. 123, 105514 (2021).
Bélières, M. et al. Simple electron donor molecules based on triphenylamine and carbazole derivatives. Dyes Pigm. 153, 275–283 (2018).
Karabiber, A., Dirik, Ö., Koc, F. & Ozel, F. Dielectric size optimization for high power density in large-scale triboelectric nanogenerators. Nano Res. 17, 8455–8464 (2024).
Wang, N., Liu, Y., Ye, E., Li, Z. & Wang, D. Control methods and applications of interface contact electrification of triboelectric nanogenerators: a review. Mater. Res. Lett. 10, 97–123 (2022).
Bai, Y., Feng, H. & Li, Z. Theory and applications of high-voltage triboelectric nanogenerators. Cell Rep. Phys. Sci. 3 (2022).
Zhang, Z., Chen, Y., Debeli, D. K. & Guo, J. S. Facile method and novel dielectric material using a nanoparticle-doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces. 10, 13082–13091 (2018).
Sokolov, A., Novikov, V. & Ding, Y. Why many polymers are so fragile. J. Phys.: Condens. Matter. 19, 205116 (2007).
Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F. & Sokolov A. P. Role of chemical structure in fragility of polymers: a qualitative picture. Macromolecules 41, 7232–7238 (2008).
Nolte, A. J., Chung, J. Y., Davis, C. S. & Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter. 13, 7930–7937 (2017).
Greenhalgh, E. S. Delamination-dominated failures in polymer composites. In Failure Analysis Fractography of Polymer Composites 164–237 (2009).
Seid, A. M. & Adimass, S. A. Review on the impact behavior of natural fiber epoxy based composites. Heliyon 10 (2024).
Kumar, K., Iqbal, M. & Gupta, P. Constitutive and dynamic behavior of nylon 66 polymer under quasi and high rate of loading. J. Vib. Eng. Technol. 12, 7563–7593 (2024).
More, A. & Donald, A. The effect of metal halides on the deformation mechanism of thin films of nylon. Polymer 33, 4081–4086 (1992).